Python Collection
class Collection(BaseModel)
count#
def count() -> int
The total number of embeddings added to the database
Returns:
- int - The total number of embeddings added to the database
add#
def add(ids: OneOrMany[ID],
embeddings: Optional[OneOrMany[Embedding]] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None) -> None
Add embeddings to the data store.
Arguments:
- ids - The ids of the embeddings you wish to add
- embeddings - The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
- metadatas - The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
- documents - The documents to associate with the embeddings. Optional.
Returns:
None
Raises:
- ValueError - If you don't provide either embeddings or documents
- ValueError - If the length of ids, embeddings, metadatas, or documents don't match
- ValueError - If you don't provide an embedding function and don't provide embeddings
- DuplicateIDError - If you provide an id that already exists
get#
def get(ids: Optional[OneOrMany[ID]] = None,
where: Optional[Where] = None,
limit: Optional[int] = None,
offset: Optional[int] = None,
where_document: Optional[WhereDocument] = None,
include: Include = ["metadatas", "documents"]) -> GetResult
Get embeddings and their associate data from the data store. If no ids or where filter is provided returns all embeddings up to limit starting at offset.
Arguments:
- ids - The ids of the embeddings to get. Optional.
- where - A Where type dict used to filter results by. E.g. {$and: [{"color" : "red"}, {"price": 4.20}]}. Optional.
- limit - The number of documents to return. Optional.
- offset - The offset to start returning results from. Useful for paging results with limit. Optional.
- where_document - A WhereDocument type dict used to filter by the documents. E.g. {"$contains" : "hello"}. Optional.
- include - A list of what to include in the results. Can contain "embeddings", "metadatas", "documents". Ids are always included. Defaults to ["metadatas", "documents"]. Optional.
Returns:
- GetResult - A GetResult object containing the results.
peek#
def peek(limit: int = 10) -> GetResult
Get the first few results in the database up to limit
Arguments:
- limit - The number of results to return.
Returns:
- GetResult - A GetResult object containing the results.
query#
def query(
query_embeddings: Optional[OneOrMany[Embedding]] = None,
query_texts: Optional[OneOrMany[Document]] = None,
ids: Optional[OneOrMany[ID]] = None,
n_results: int = 10,
where: Optional[Where] = None,
where_document: Optional[WhereDocument] = None,
include: Include = ["metadatas", "documents",
"distances"]) -> QueryResult
Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.
Arguments:
- query_embeddings - The embeddings to get the closest neighbors of. Optional.
- query_texts - The document texts to get the closest neighbors of. Optional.
- ids - The list of ids to limit search space to. Optional.
- n_results - The number of neighbors to return for each query_embedding or query_texts. Optional.
- where - A Where type dict used to filter results by. E.g. {$and: [{"color" : "red"}, {"price": 4.20}]}. Optional.
- where_document - A WhereDocument type dict used to filter by the documents. E.g. {"$contains" : "hello"}. Optional.
- include - A list of what to include in the results. Can contain "embeddings", "metadatas", "documents", "distances". Ids are always included. Defaults to ["metadatas", "documents", "distances"]. Optional.
Returns:
- QueryResult - A QueryResult object containing the results.
Raises:
- ValueError - If you don't provide either query_embeddings or query_texts
- ValueError - If you provide both query_embeddings and query_texts
modify#
def modify(name: Optional[str] = None,
metadata: Optional[CollectionMetadata] = None) -> None
Modify the collection name or metadata
Arguments:
- name - The updated name for the collection. Optional.
- metadata - The updated metadata for the collection. Optional.
Returns:
None
update#
def update(ids: OneOrMany[ID],
embeddings: Optional[OneOrMany[Embedding]] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None) -> None
Update the embeddings, metadatas or documents for provided ids.
Arguments:
- ids - The ids of the embeddings to update
- embeddings - The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
- metadatas - The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
- documents - The documents to associate with the embeddings. Optional.
Returns:
None
upsert#
def upsert(ids: OneOrMany[ID],
embeddings: Optional[OneOrMany[Embedding]] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None) -> None
Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.
Arguments:
- ids - The ids of the embeddings to update
- embeddings - The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
- metadatas - The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
- documents - The documents to associate with the embeddings. Optional.
Returns:
None
delete#
def delete(ids: Optional[IDs] = None,
where: Optional[Where] = None,
where_document: Optional[WhereDocument] = None) -> None
Delete the embeddings based on ids and/or a where filter
Arguments:
- ids - The ids of the embeddings to delete
- where - A Where type dict used to filter the deletion by. E.g. {$and: [{"color" : "red"}, {"price": 4.20}]}. Optional.
- where_document - A WhereDocument type dict used to filter the deletion by the document content. E.g. {"$contains" : "hello"}. Optional.
Returns:
None