Schema Basics

Learn how to create and use Schema to configure indexes on your Chroma collections.

Schema Structure#

A Schema has two main components that work together to control indexing behavior:

Defaults

Defaults define index configuration for all keys of a given data type. When you add metadata to your collection, Chroma looks at the value type (string, int, float, etc.) and applies the default index configuration for that type.

For example, if you disable string inverted indexes globally, no string metadata fields will be indexed unless you create a key-specific override.

Keys

Keys define index configuration for specific metadata fields. These override the defaults for individual fields, giving you fine-grained control.

For example, you might disable string indexing globally but enable it specifically for a "category" field that you frequently filter on.

How They Work Together

When determining whether to index a field, Chroma follows this precedence:

  1. Key-specific configuration (if exists) - highest priority
  2. Default configuration (for that value type) - fallback
  3. Built-in defaults (if no Schema provided) - final fallback

This means you can set broad defaults and then override them for specific fields as needed.

Default Index Behavior#

Without providing a Schema, collections use built-in defaults for indexing. For a complete overview of all value types, index types, and their defaults, see the Index Configuration Reference.

Special Keys

Chroma uses two reserved key names:

K.DOCUMENT (#document) stores document text content with FTS enabled and String Inverted Index disabled. This allows full-text search while avoiding redundant indexing.

K.EMBEDDING (#embedding) stores dense vector embeddings with Vector Index enabled, sourcing from K.DOCUMENT. This enables semantic similarity search.

Use K.DOCUMENT and K.EMBEDDING in your code (they correspond to internal keys #document and #embedding). These special keys are automatically configured and cannot be manually modified. See the Search API field reference for more details.

Example: Using Defaults

# Without Schema - uses defaults from table above collection = client.create_collection(name="my_collection") collection.add( ids=["id1"], documents=["Some text"], # FTS index embeddings=[[1.0, 2.0]], # Vector index metadatas=[{ "category": "science", # String inverted index "year": 2024, # Int inverted index "score": 0.95, # Float inverted index "published": True # Bool inverted index }] )

Creating Schema Objects#

Create a Schema object to customize index configuration:

from chromadb import Schema # Create an empty schema (starts with defaults) schema = Schema() # The schema is now ready to be configured

Creating Indexes#

The create_index() Method

Use create_index() to enable or configure indexes. The method takes:

  • config: An index configuration object (or None to enable all indexes for a key)
  • key: Optional - specify a metadata field name for key-specific configuration

The method returns the Schema object, enabling method chaining.

Creating Global Indexes

Create indexes that apply globally. This example shows configuring the vector index with custom settings:

from chromadb import Schema, VectorIndexConfig from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction schema = Schema() # Configure vector index with custom embedding function embedding_function = OpenAIEmbeddingFunction( api_key="your-api-key", model_name="text-embedding-3-small" ) schema.create_index(config=VectorIndexConfig( space="cosine", embedding_function=embedding_function ))

Creating Key-Specific Indexes

Configure indexes for specific metadata fields. This example shows configuring the sparse vector index with custom settings:

from chromadb import Schema, SparseVectorIndexConfig, K from chromadb.utils.embedding_functions import ChromaCloudSpladeEmbeddingFunction schema = Schema() # Add sparse vector index for a specific key (required for hybrid search) sparse_ef = ChromaCloudSpladeEmbeddingFunction() schema.create_index( config=SparseVectorIndexConfig( source_key=K.DOCUMENT, embedding_function=sparse_ef ), key="sparse_embedding" )

This example uses ChromaCloudSpladeEmbeddingFunction, but you can use other sparse embedding functions like HuggingFaceSparseEmbeddingFunction or FastembedSparseEmbeddingFunction depending on your needs.

Disabling Indexes#

The delete_index() Method

Use delete_index() to disable indexes. Like create_index(), it takes:

  • config: An index configuration object (or None to disable all indexes for a key)
  • key: Optional - specify a metadata field name for key-specific configuration

Returns the Schema object for method chaining.

Examples

from chromadb import Schema, StringInvertedIndexConfig, IntInvertedIndexConfig schema = Schema() # Disable string inverted index globally schema.delete_index(config=StringInvertedIndexConfig()) # Disable int inverted index for a specific key schema.delete_index(config=IntInvertedIndexConfig(), key="unimportant_count") # Disable all indexes for a specific key schema.delete_index(key="temporary_field")

Note: Not all indexes can be deleted. Vector and FTS indexes currently cannot be disabled

Method Chaining#

Both create_index() and delete_index() return the Schema object, enabling fluent method chaining:

from chromadb import Schema, StringInvertedIndexConfig, IntInvertedIndexConfig schema = (Schema() .delete_index(config=StringInvertedIndexConfig()) # Disable globally .create_index(config=StringInvertedIndexConfig(), key="category") # Enable for category .create_index(config=StringInvertedIndexConfig(), key="tags") # Enable for tags .delete_index(config=IntInvertedIndexConfig())) # Disable int indexing

Using Schema with Collections#

Pass the configured schema to create_collection() or get_or_create_collection():

# Create collection with schema collection = client.create_collection( name="my_collection", schema=schema ) # Or use get_or_create_collection collection = client.get_or_create_collection( name="my_collection", schema=schema )

Schema Persistence

Schema configuration is automatically saved with the collection. When you retrieve a collection with get_collection() or get_or_create_collection(), the schema is loaded automatically. You don't need to provide the schema again.

Next Steps#