Contextual AI

Contextual AI provides enterprise-grade components for building production RAG agents. It offers state-of-the-art document parsing, reranking, generation, and evaluation capabilities that integrate seamlessly with Chroma as the vector database. Contextual AI's tools enable developers to build document intelligence applications with advanced parsing, instruction-following reranking, grounded generation with minimal hallucinations, and natural language testing for response quality.

| Docs | GitHub | Examples | Blog |

You can use Chroma together with Contextual AI's Parse, Rerank, Generate, and LMUnit APIs to build and evaluate comprehensive RAG pipelines.

Installation#

Terminal
pip install chromadb contextual-client

Complete RAG Pipeline

Parse documents and store in Chroma

Python
from contextual import ContextualAI import chromadb from chromadb.utils import embedding_functions # Initialize clients contextual_client = ContextualAI(api_key=os.environ["CONTEXTUAL_AI_API_KEY"]) chroma_client = chromadb.EphemeralClient() # Parse document with open("document.pdf", "rb") as f: parse_response = contextual_client.parse.create( raw_file=f, parse_mode="standard", enable_document_hierarchy=True ) # Monitor job status (Parse API is asynchronous) import asyncio async def wait_for_job_async(job_id, max_attempts=20, interval=30.0): """Asynchronously poll until job is ready, exiting early if possible.""" for attempt in range(max_attempts): status = await asyncio.to_thread(contextual_client.parse.job_status, job_id) if status.status == "completed": return True elif status.status == "failed": raise Exception("Parse job failed") await asyncio.sleep(interval) return True # give up but don't fail hard asyncio.run(wait_for_job_async(parse_response.job_id)) # Get results after job completion results = contextual_client.parse.job_results( parse_response.job_id, output_types=['blocks-per-page'] ) # Create Chroma collection openai_ef = embedding_functions.OpenAIEmbeddingFunction( api_key=os.environ["OPENAI_API_KEY"], model_name="text-embedding-3-small" ) # Create or get existing collection collection = chroma_client.get_or_create_collection( name="documents", embedding_function=openai_ef ) # Add parsed content to Chroma texts, metadatas, ids = [], [], [] for page in results.pages: for block in page.blocks: if block.type in ['text', 'heading', 'table']: texts.append(block.markdown) metadatas.append({ "page": page.index + 1, "block_type": block.type }) ids.append(f"block_{block.id}") collection.add( documents=texts, metadatas=metadatas, ids=ids )

Query Chroma and rerank results with custom instructions

Python
# Query Chroma query = "What are the key findings?" results = collection.query( query_texts=[query], n_results=10 ) # Rerank with instruction-following rerank_response = contextual_client.rerank.create( query=query, documents=results['documents'][0], metadata=[str(m) for m in results['metadatas'][0]], model="ctxl-rerank-v2-instruct-multilingual", instruction="Prioritize recent documents. Technical details and specific findings should rank higher than general information." ) # Get top documents top_docs = [ results['documents'][0][r.index] for r in rerank_response.results[:5] ]

Generate grounded response

Python
# Generate grounded response generate_response = contextual_client.generate.create( messages=[{ "role": "user", "content": query }], knowledge=top_docs, model="v1", # Supported models: v1, v2 avoid_commentary=False, temperature=0.7 ) print("Response:", generate_response.response)

Evaluate response quality with LMUnit

Python
# Evaluate generated response quality lmunit_response = contextual_client.lmunit.create( query=query, response=generate_response.response, unit_test="The response should be technically accurate and cite specific findings" ) print(f"Quality Score: {lmunit_response.score}") # Score interpretation (continuous scale 1-5): # 5 = Excellent - Fully satisfies criteria # 4 = Good - Minor issues # 3 = Acceptable - Some issues # 2 = Poor - Significant issues # 1 = Unacceptable - Fails criteria

Advanced Usage#

For more advanced usage examples including table extraction, document hierarchy preservation, and multi-document RAG pipelines, please refer to the comprehensive examples in our Jupyter notebooks:

Components#

Parse API

Advanced document parsing that handles PDFs, DOCX, and PPTX files with:

  • Document hierarchy preservation through parent-child relationships
  • Intelligent table extraction with automatic splitting for large tables
  • Multiple output formats: markdown-document, markdown-per-page, blocks-per-page
  • Figure and caption extraction

Parse API Documentation

Rerank API

State-of-the-art reranker with instruction-following capabilities:

  • BEIR benchmark-leading accuracy
  • Custom reranking instructions for domain-specific requirements
  • Handles conflicting retrieval results
  • Multi-lingual support

Models: ctxl-rerank-v2-instruct-multilingual, ctxl-rerank-v2-instruct-multilingual-mini, ctxl-rerank-v1-instruct

Rerank API Documentation

Generate API (GLM)

Grounded Language Model optimized for minimal hallucinations:

  • Industry-leading groundedness for RAG applications, currently #1 on the FACTS Grounding benchmark from Google DeepMind
  • Knowledge attribution for source transparency
  • Conversational context support
  • Optimized for enterprise use cases

Supported Models: v1, v2

Generate API Documentation

LMUnit API

Natural language unit testing for LLM response evaluation:

  • State-of-the-art response quality assessment
  • Structured testing methodology
  • Domain-agnostic evaluation framework
  • API-based evaluation at scale

Scoring Scale (Continuous 1-5):

  • 5: Excellent - Fully satisfies criteria
  • 4: Good - Minor issues
  • 3: Acceptable - Some issues
  • 2: Poor - Significant issues
  • 1: Unacceptable - Fails criteria

LMUnit Documentation