Contextual AI
Contextual AI provides enterprise-grade components for building production RAG agents. It offers state-of-the-art document parsing, reranking, generation, and evaluation capabilities that integrate seamlessly with Chroma as the vector database. Contextual AI's tools enable developers to build document intelligence applications with advanced parsing, instruction-following reranking, grounded generation with minimal hallucinations, and natural language testing for response quality.
| Docs | GitHub | Examples | Blog |
You can use Chroma together with Contextual AI's Parse, Rerank, Generate, and LMUnit APIs to build and evaluate comprehensive RAG pipelines.
Installation#
pip install chromadb contextual-client
Complete RAG Pipeline
Parse documents and store in Chroma
from contextual import ContextualAI
import chromadb
from chromadb.utils import embedding_functions
# Initialize clients
contextual_client = ContextualAI(api_key=os.environ["CONTEXTUAL_AI_API_KEY"])
chroma_client = chromadb.EphemeralClient()
# Parse document
with open("document.pdf", "rb") as f:
parse_response = contextual_client.parse.create(
raw_file=f,
parse_mode="standard",
enable_document_hierarchy=True
)
# Monitor job status (Parse API is asynchronous)
import asyncio
async def wait_for_job_async(job_id, max_attempts=20, interval=30.0):
"""Asynchronously poll until job is ready, exiting early if possible."""
for attempt in range(max_attempts):
status = await asyncio.to_thread(contextual_client.parse.job_status, job_id)
if status.status == "completed":
return True
elif status.status == "failed":
raise Exception("Parse job failed")
await asyncio.sleep(interval)
return True # give up but don't fail hard
asyncio.run(wait_for_job_async(parse_response.job_id))
# Get results after job completion
results = contextual_client.parse.job_results(
parse_response.job_id,
output_types=['blocks-per-page']
)
# Create Chroma collection
openai_ef = embedding_functions.OpenAIEmbeddingFunction(
api_key=os.environ["OPENAI_API_KEY"],
model_name="text-embedding-3-small"
)
# Create or get existing collection
collection = chroma_client.get_or_create_collection(
name="documents",
embedding_function=openai_ef
)
# Add parsed content to Chroma
texts, metadatas, ids = [], [], []
for page in results.pages:
for block in page.blocks:
if block.type in ['text', 'heading', 'table']:
texts.append(block.markdown)
metadatas.append({
"page": page.index + 1,
"block_type": block.type
})
ids.append(f"block_{block.id}")
collection.add(
documents=texts,
metadatas=metadatas,
ids=ids
)
Query Chroma and rerank results with custom instructions
# Query Chroma
query = "What are the key findings?"
results = collection.query(
query_texts=[query],
n_results=10
)
# Rerank with instruction-following
rerank_response = contextual_client.rerank.create(
query=query,
documents=results['documents'][0],
metadata=[str(m) for m in results['metadatas'][0]],
model="ctxl-rerank-v2-instruct-multilingual",
instruction="Prioritize recent documents. Technical details and specific findings should rank higher than general information."
)
# Get top documents
top_docs = [
results['documents'][0][r.index]
for r in rerank_response.results[:5]
]
Generate grounded response
# Generate grounded response
generate_response = contextual_client.generate.create(
messages=[{
"role": "user",
"content": query
}],
knowledge=top_docs,
model="v1", # Supported models: v1, v2
avoid_commentary=False,
temperature=0.7
)
print("Response:", generate_response.response)
Evaluate response quality with LMUnit
# Evaluate generated response quality
lmunit_response = contextual_client.lmunit.create(
query=query,
response=generate_response.response,
unit_test="The response should be technically accurate and cite specific findings"
)
print(f"Quality Score: {lmunit_response.score}")
# Score interpretation (continuous scale 1-5):
# 5 = Excellent - Fully satisfies criteria
# 4 = Good - Minor issues
# 3 = Acceptable - Some issues
# 2 = Poor - Significant issues
# 1 = Unacceptable - Fails criteria
Advanced Usage#
For more advanced usage examples including table extraction, document hierarchy preservation, and multi-document RAG pipelines, please refer to the comprehensive examples in our Jupyter notebooks:
Components#
Parse API
Advanced document parsing that handles PDFs, DOCX, and PPTX files with:
- Document hierarchy preservation through parent-child relationships
- Intelligent table extraction with automatic splitting for large tables
- Multiple output formats: markdown-document, markdown-per-page, blocks-per-page
- Figure and caption extraction
Rerank API
State-of-the-art reranker with instruction-following capabilities:
- BEIR benchmark-leading accuracy
- Custom reranking instructions for domain-specific requirements
- Handles conflicting retrieval results
- Multi-lingual support
Models: ctxl-rerank-v2-instruct-multilingual, ctxl-rerank-v2-instruct-multilingual-mini, ctxl-rerank-v1-instruct
Generate API (GLM)
Grounded Language Model optimized for minimal hallucinations:
- Industry-leading groundedness for RAG applications, currently #1 on the FACTS Grounding benchmark from Google DeepMind
- Knowledge attribution for source transparency
- Conversational context support
- Optimized for enterprise use cases
Supported Models: v1, v2
LMUnit API
Natural language unit testing for LLM response evaluation:
- State-of-the-art response quality assessment
- Structured testing methodology
- Domain-agnostic evaluation framework
- API-based evaluation at scale
Scoring Scale (Continuous 1-5):
- 5: Excellent - Fully satisfies criteria
- 4: Good - Minor issues
- 3: Acceptable - Some issues
- 2: Poor - Significant issues
- 1: Unacceptable - Fails criteria